1. Let a and b be distinct elements in a group G. Show that there is an automorphism of G that carries ab to ba. Why does this prove that $|ab| = |ba|$?

Solution: Consider the inner automorphism $\chi : G \to G$ given by $\chi(g) = a^{-1}xa$. Then we have $\chi(ab) = a^{-1}(ab)a = (a^{-1}a)(ba) = ba$. Since for all isomorphisms $\phi : G \to H$ we always have $|\phi(g)| = |g|$, for the inner automorphism χ above we must have $|ba| = |\chi(ab)| = |ab|$.

2. Suppose that K is a subgroup of H and H is a subgroup of G. If there are six left cosets of K in H and four left cosets of H in G, how many left cosets of K are there in G?

Solution: The number of cosets of K in G is equal to the index of K in G, namely

$$|G : K| = |G|/|K| = (|G|/|H|)(|H|/|K|) = |G : H| \cdot |H : K| = 4 \cdot 6 = 24.$$

3. If H and K are subgroups of G and $g \in G$, prove that $gH \cap gK = g(H \cap K)$.

Proof. Let H and K be subgroups of G and let g be an element of G. Then $H \cap K = \{x \in G : x \in H$ and $x \in K\}$, so $gH \cap gK = \{gx \in G : x \in H$ and $x \in K\} = \{y \in G : y \in gH$ and $y \in gK\}$ (where $y = gx$ from before, so $x \in H$ implies $y = gx \in gH$ by multiplying throughout by g on the left). Hence $g(H \cap K) = \{y \in G : y \in gH$ and $y \in gK\} = gH \cap gK$.

4. Prove that the only subgroup of D_5 that contains two reflections is D_5 itself.

Proof. Suppose $H \leq D_5$ contains distinct reflections ρ_1 and ρ_2. Then, by closure, the product $\rho_1\rho_2 \in H$, but we know that the product of two reflections in a dihedral group is a rotation. We claim that this rotation is non-trivial, i.e., that $\rho_1\rho_2 \neq R_0$. For, if $\rho_1\rho_2 = R_0$, then $\rho_1 = \rho_2^{-1}$, since R_0 is the identity element in D_5. However, $\rho_2^{-1} = \rho_2$, since every reflection is its own inverse, so $\rho_1 = \rho_2$, which contradicts our assumption that ρ_1 and ρ_2 are distinct. Therefore $\rho_1\rho_2$ is a nontrivial rotation in D_5, so it is of the form $R_{360k/5} = R_{72k}$ for some k with $1 \leq k \leq 4$, so this $R_{72k} \in H$.

We recall that the set of reflections in D_5 is a cyclic subgroup of D_5 of order 5, and a cyclic group (a) is generated by any element a^m so long as m is relatively prime to the order of a, i.e., gcd$(|a|, m) = 1$. Therefore, the element $R_{72k} \in H$ we found above is a generator for the subgroup of rotations of D_5, so all 5 rotations in D_5 belong to H and there are also the two reflections ρ_1 and ρ_2. Hence $|H| \geq 7$, but $|H|$ divides $|D_5| = 10$ by Lagrange’s Theorem. Therefore, $|H| = 10 = |D_5|$, as 10 is the only divisor of 10 that is greater than or equal to 7, so $H = D_5$.

5. Suppose that H is a subgroup of a group G and that $|G| = 60$ and $|H| = 10$. Prove that for every $a \in G$, there is an integer k with $1 \leq k \leq 6$ so that $a^k \in H$.

Proof. Suppose $H \leq G$ where $|H| = 10$ and $|G| = 60$. Thus, by Lagrange’s Theorem, there are $|G : H| = |G|/|H| = 60/10 = 6$ left cosets of H in G. Now let $a \in G$ and consider the cosets $aH, a^2H, a^3H, a^4H, a^5H, a^6H, a^7H$. This is a listing of seven left cosets of H, but there are exactly 6 distinct left cosets of H in G. Therefore, at least two of the cosets we have listed must be the same. Let’s call them a^iH and a^jH, where we assume that $i < j$. Thus $a^iH = a^jH$, so $H = a^{-i}a^jH = a^{-i}H$, which implies that $a^{j-i} \in H$. Yet $1 \leq i < j \leq 7$, so $1 \leq j - i \leq 7 - 1 = 6$, so for $k = j - i$, which satisfies $1 \leq k \leq 6$, we have $a^k \in H$.

6. Suppose that H is a proper subgroup of S_4 and that H contains $(12)(34)$ and (234). Prove that $H = A_4$.

Proof. Let H be a proper subgroup of S_4, which means that $H \neq S_4$, and assume that $(12)(34), (234) \in H$. We claim that $H = A_4$ is the alternating group of degree 4, which has order $|A_4| = 4!/2 = 24/2 = 12$. Now H contains the element $(12)(34)$, so H contains the cyclic subgroup $\langle (12)(34) \rangle$, whose order is 2. Similarly, H contains the cyclic subgroup generated by $(234) \in H$, and we know $|\langle (234) \rangle| = |(234)| = 3$. Hence H contains a subgroup of order 2 and a subgroup of order 3. By Lagrange’s Theorem, the order $|H|$ of H must then be divisible by both 2 and by 3, and hence by $6 = \text{lcm}(2,3)$. That is, 6 divides $|H|$ and $|H|$ divides $|S_4| = 4! = 24$, so $|H|$ is either 6 or 12 or 24. However, H is a proper subgroup of S_4, so $|H| < 24$. That means $|H|$ is either 6 or 12.

Now $(12)(34)$ and (234) are both even permutations, so both belong to A_4 and the subgroup E generated by them must also be a subgroup of A_4 and $|E| \geq 6$ by the argument above. Yet A_4 contains no subgroups of order 6, so $E \leq A_4$ and $6 \leq |E|$ imply that $E = A_4$. Therefore, as H contains $E = A_4$, we have $A_4 \leq H \leq S_4$. Now $|S_4 : A_4| = 2$, so there are no proper subgroups of S_4 strictly between A_4 and S_4, so $H = A_4$ since it must be a proper subgroup of S_4. \[\square\]

7. What is the order of the element $6 + \langle 8 \rangle$ in the factor group $\mathbb{Z}_{48}/\langle 8 \rangle$?

Solution: The order of $6 + \langle 8 \rangle \in \mathbb{Z}_{48}/\langle 8 \rangle$ is the least positive integer k such that $k(6 + \langle 8 \rangle) = 6k + \langle 8 \rangle$ is equal to the identity element, 0 + $\langle 8 \rangle$ = $\langle 8 \rangle$ in the factor group. Thus, the order is the least positive integer k such that $6k \in \langle 8 \rangle = \{0, 8, 16, 24, 32, 40\}$, from which we can see that $k = 4$ is the order. Hence $|6 + \langle 8 \rangle| = 4$.

8. Let $G = GL(2, \mathbb{R})$ and let $H = \{A \in GL(2, \mathbb{R}) : \det(A) \text{ is rational} \}$. Prove that H is a normal subgroup of G.

Proof. We will use the Normal Subgroup Test, so let $x \in G$ and $A \in H$ and consider xAx^{-1}. In particular, $\det(xAx^{-1}) = \det(x) \det(A) \det(x^{-1}) = \det(x) \det(x^{-1}) \det(A) = \det(xx^{-1}) \det(A) = \det(I_2) \det(A) = \det(A)$, which is rational since $A \in H$. Therefore $xAx^{-1} \in H$ as well, so $xHx^{-1} \subseteq H$ since the element $A \in H$ was arbitrary. So, by the Normal Subgroup Test, H is normal in G. \[\square\]

9. Let $H = \{\beta \in S_4 : \beta(4) = 4\}$. Is the subgroup H normal in G? Justify your answer.

Solution: The subgroup H is not normal in $G = S_4$.

Proof. Let $\sigma = (34) \in S_4$ and let $\beta = (123) \in S_4$. Then $\beta(4) = 4$, so $\beta \in H$. Consider the permutation $\sigma \beta \sigma = (34)(123)(34) = (124)(3) = (124)$. Therefore $(\sigma \beta \sigma)(4) = 1 \neq 4$, so $\sigma \beta \sigma \notin H$, so $\sigma H \sigma^{-1} \not\subseteq H$, so H is not normal in $G = S_4$. \[\square\]

10. Suppose that H is a normal subgroup of G with $|G : H| = 24$ and $|H| = 11$. If $x \in G$ and $x^{11} = e$, prove that $x \in H$.

Proof. Since H is normal in G and $x^{11} = e$, we have $x^{11} \in H$. Therefore, $x = x^{11}x^{-1} \in H$ since H is normal in G. \[\square\]
Proof. Let $H \leq G$ be a normal subgroup of G such that $|G : H| = 24$ and $|H| = 11$. Let $x \in G$ be an element such that $x^{11} = e$. As H is normal in G, G/H is a factor group of order $|G : H| = 24$. Consider the coset $xH \in G/H$. Since $|G/H| = 24$, $(xH)_{G/H} = (xH)^{24} = (x^{24})H$ must be the identity element by Corollary 4 to Lagrange’s Theorem. Hence $x^{24} \in H$, as $x^{24}H = eH$. Yet $x^{24} = x^{22} \cdot x^2 = (x^{11})^2 \cdot x^2 = e^2 \cdot x^2 = x^2$, so $x^2 \in H$. As $x^2 \in H$, $x^{2n} \in H$ for all $n \in \mathbb{Z}$. In particular, $x^{12} \in H$. But we already know that $x^{11} = e$, so $x = x \cdot e = x \cdot x^{11} = x^{12} \in H$ implies that $x \in H$, which is what we needed to prove. \qed

11. If H is a normal subgroup of G and K is any subgroup of G, prove that the subgroup $H \cap K$ is normal in K.

Proof. We will apply the Normal Subgroup Test to $N = H \cap K$, viewed as a subgroup of K (we know that $N \leq K$ from previous work). Suppose $x \in K$ and $y \in N$. Since $N = H \cap K$, $y \in N$ implies that $y \in H$ and $y \in K$. Thus, since K is a subgroup of G, the product $xyx^{-1} \in K$ since both $x, y \in K$. Since H is normal in G, the product $xyx^{-1} \in H$ as $y \in H$ and $x \in K \leq G$. Therefore, $xyx^{-1} \in H \cap K = N$, so $xNx^{-1} \subseteq N$. Hence N is normal in K since the element $x \in K$ was arbitrary. \qed

12. Let G be a group with more than one element. Is it ever the case that the set of all homomorphisms from G to G is a group under function composition? Justify your answer.

Solution: No.

Proof. First of all, under function composition, the “identity element” must be the identity function, $id_G : G \rightarrow G$ given by $id_G(g) = g$ for all $g \in G$.

We know that for any pair of groups G_1 and G_2, there is always the trivial homomorphism $\varepsilon : G_1 \rightarrow G_2$ defined by $\varepsilon(g) = e_2$ for all $g \in G_1$, where e_2 is the identity element of G_2. We claim that the homomorphism $\varepsilon : G \rightarrow G$ is not invertible in the set of all homomorphisms from G to G under function composition. For, suppose to the contrary that there is a homomorphism $\varphi : G \rightarrow G$ such that $\varphi \circ \varepsilon = id_G$. Let $g \in G$ be an element other that e, which exists since we are assuming that G is a group with more than one element. Consider $\varphi(\varepsilon(g)) = \varphi(e) = e \neq g = id_G(g)$, so $\varphi \circ \varepsilon \neq id_G$. Hence the homomorphism ε has no inverse, so the set of all homomorphisms from G to G under function composition is not a group. \qed

13. Show that there are infinitely many homomorphisms from \mathbb{Z} to itself.

Solution: For each integer $n \geq 0$, define the function $\varphi_n : \mathbb{Z} \rightarrow \mathbb{Z}$ by $\varphi_n(a) = na$. Then φ_n is a function from \mathbb{Z} to itself which is operation-preserving, since

$$\varphi_n(a + b) = n(a + b) = na + nb = \varphi_n(a) + \varphi_n(b).$$

Hence, φ_n is a group homomorphism from \mathbb{Z} to itself for each integer $n \geq 0$. We claim that if n and m are distinct non-negative integers, then φ_n and φ_m are distinct homomorphisms. To see this, it is enough to compare $\varphi_n(1) = n1 = n$ with $\varphi_m(1) = m1 = m$. As $n \neq m$, $\varphi_n(1) \neq \varphi_m(1)$, so $\varphi_n \neq \varphi_m$. Thus there are infinitely many group homomorphisms from \mathbb{Z} to itself.

14. Given that m divides n, show that $\mathbb{Z}/m\mathbb{Z}$ is a homomorphic image of $\mathbb{Z}/n\mathbb{Z}$.
Proof. Let m, n be integers such that m divides n. Define a map $\varphi : \mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Z}/m\mathbb{Z}$ by $\varphi(a) = a \mod m$. We need to show that φ is well-defined, is a homomorphism, and is onto.

Suppose $a = b \mod n$. Then n divides $a - b$, say $a - b = nq$ for some integer q. Since m divides n, we may write $n = mp$ for some $p \in \mathbb{Z}$. Therefore, $a - b = nq = mpq$ and $pq \in \mathbb{Z}$, so m divides $a - b$. Hence $a = b \mod m$. Therefore, $\varphi(a) = a \mod m = b \mod m = \varphi(b)$, so $\varphi : \mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Z}/m\mathbb{Z}$ is well-defined.

Now suppose $a, b \in \mathbb{Z}/n\mathbb{Z}$ and consider $\varphi(a+b) = (a+b) \mod m = (a \mod m) + (b \mod m) \mod m = \varphi(a) + \varphi(b)$, so φ is a homomorphism.

Finally, suppose $c \in \mathbb{Z}/m\mathbb{Z}$. Then there is an integer a such that $0 \leq a < m$ and $c = a \mod m$. Consider a in $\mathbb{Z}/n\mathbb{Z}$. Then $\varphi(a) = a \mod m = c$, so φ is onto. Thus $\mathbb{Z}/m\mathbb{Z}$ is a homomorphic image of $\mathbb{Z}/n\mathbb{Z}$ as claimed.

15. Suppose that φ is a homomorphism from a group G to an Abelian group H and N is a subgroup of G that contains $\ker \varphi$. Prove that N is normal in G.

Proof. Suppose that $\varphi : G \rightarrow H$ is a homomorphism, where H is an Abelian group. Let $N \leq G$ be a subgroup such that $\ker \varphi \subseteq N$. Let $x \in G$ and $y \in N$ and consider $xyx^{-1} \in G$. In particular, consider $\varphi(xyx^{-1}) = \varphi(x)\varphi(y)\varphi(x^{-1})$ in H, which is Abelian. Thus $\varphi(x)\varphi(y)\varphi(x^{-1}) = \varphi(x)\varphi(x^{-1})\varphi(y) = \varphi(xx^{-1})\varphi(y) = \varphi(y)$. Thus $\varphi(xyx^{-1}) = \varphi(y)$, so $\varphi(xyx^{-1})\varphi(y)^{-1} = \varphi(xyx^{-1}y^{-1}) = e_H$. Therefore, $xyx^{-1}y^{-1} \in \ker \varphi$, which is contained in N and $y \in N$, so $xyx^{-1} = (xyx^{-1}y^{-1})y \in N$. Hence $xNx^{-1} \subseteq N$ since $y \in N$ was arbitrary. So, by the Normal Subgroup Test, N is normal in G, since $x \in G$ was arbitrary.